

Inhalt

- Technische Beschreibung
- Programmbedienung
- Validierung
- Referenzen

Technische Beschreibung

- Zusätzlich zu den PHOENICS-Fähigkeiten bietet PHOENICS-CVD folgende Simulationsmodelle an:
 - Mehrkomponenten-Gase
 - Strahlungsmodell: Surface-to-Surface Modell
 - Gas und Oberflächenreaktionen
 - Plasmamodellierung

PHOENICS - Agenda

Mehrkomponenten Gase

- Bis zu 30 Spezies können berücksichtigt werden
- Die Gemischeigenschaften können wie folgt ermittelt werden:
 - Lokale Konzentrationen und Bedingungen oder
 - Eigenschaften des Trägergases und lokale Bedingungen, oder
 - Eigenschaften des Trägergases und eine Referenztemperatur

- Molekulare Diffusion:
 - Fickischer Ansatz
 - Wilkscher Ansatz
 - Stefan-Maxwellscher Ansatz
- Thermische Diffusion:
 - Clark-Jonesche oder Exakt
 - Starre Kugel oder Leonard Jones

Strahlungsmodell

- Conjugate Heat Transfer kompatibel
- unterstützt semi-transparente Medien
- Thermische Zonen werden auf Wandflächen definiert.
- Sichtfaktoren werden zwischen den thermischen Zonen berechnet.
- Matrix für die Koeffizienten des Strahlungsaustauschs wird erstellt.
- Optische Eigenschaften der Oberflächen:
 - Spektrale Bänder
 - temperaturabhängig

PHOENICS - Agenda

Chemie

Gasreaktionen:

- Arrhenius
 - Lindemann
- Troe (9 oder 10 Parameter)
- eigene Modelle (Beispiele vorhanden)

Oberflächenreaktionen:

- Langmuir-Hinshelwood
- Reaktionshaftungskoeffizient
- kinetisch- oder diffusionsbedingte Reaktionen
- eigene Modelle
- erweitert: Adsorbtion

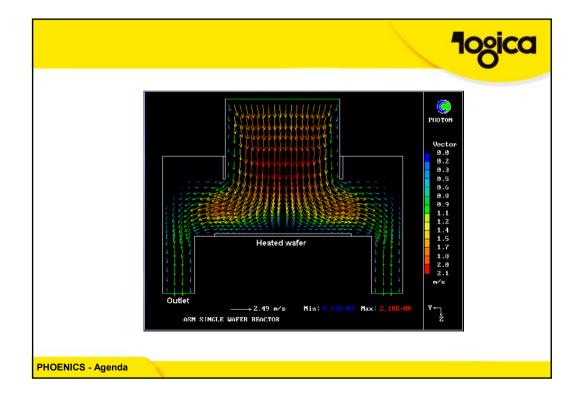
Stiffness:

- Quelltermlinearisierung
- automatische Relaxation (False Time Step)
- Stiff-Solver (Punkt für Punkt)

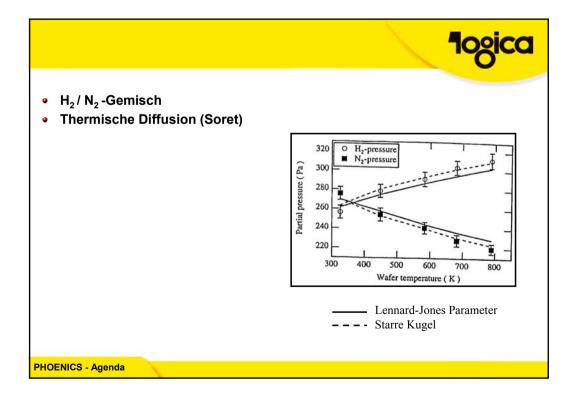
Plasma

- Effectives Drift-Diffusion Model
 - Plasma charakteristische Länge <
 Reaktordimensionen
 - Elektronenfrequenzen >> RF-Frequenzen
 - Ionenfrequenzen << RF-Frequenzen
- · Zusätzliche Gleichungen für:
 - Elektronendichte
 - Elektronentemperatur
 - Komplexe Strompotential

 Gas- und Oberflächenreaktionen können durch Plasma beeinflußt werden

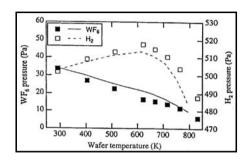

PHOENICS - Agenda

Programmbedienung

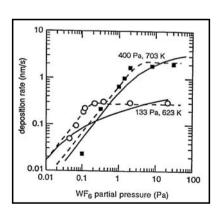


- Menü
 - Spezielle Menüs für CVD
 - Thermische Zonen werden automatisch erstellt
 - getrennte Ansicht der Randbedingungen für:
 - Chemie
 - Strahlung
 - Plasma
- Parallel wird eine Q1-Datei erstellt.
- Transport-, themodynamische, chemische und optische Eigenschaften werden in erweiterbaren ASCII-Dateien zur Verfügung gestellt.
- Besonderheiten:
 - Eintrittsbedingungen in sccm
 - Shower Plates

• Kalte Wände • Ein Wafer • Wolfram-Abscheidung

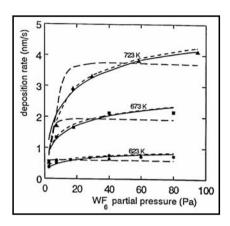


- WF₆+3H₂ = W_(s) + 6 HF
- Einfluß der thermischen Diffusion bei niedrigen Temperaturen
- Oberflächenreaktionen bei hohen Temperaturen

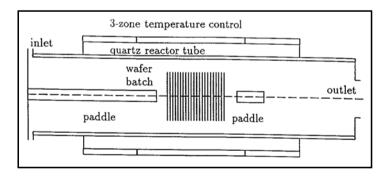


PHOENICS - Agenda

10oica

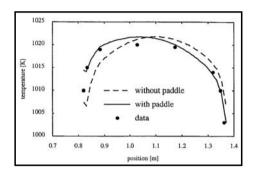

- Ablagerungsrate
- Zwei Chemiemodelle:
 - Detaillierte Chemie
 - Empirisches Modell

- Ablagerungsrate:
 - Detaillierte Chemie korrigiert -
 - Empirisches Modell 1
 - Empirisches Modell 2

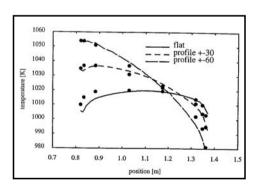


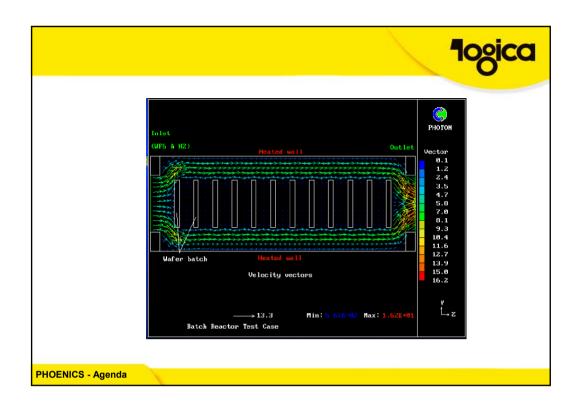
PHOENICS - Agenda

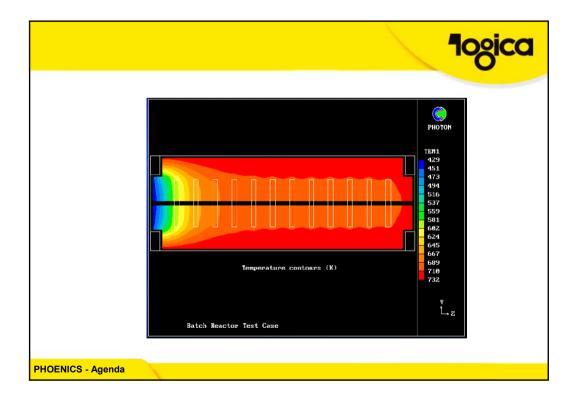
Validierung 2

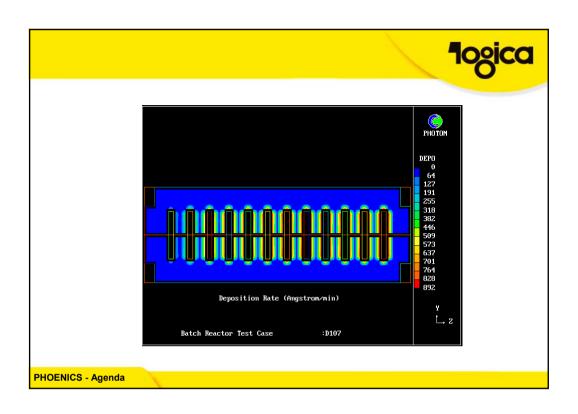


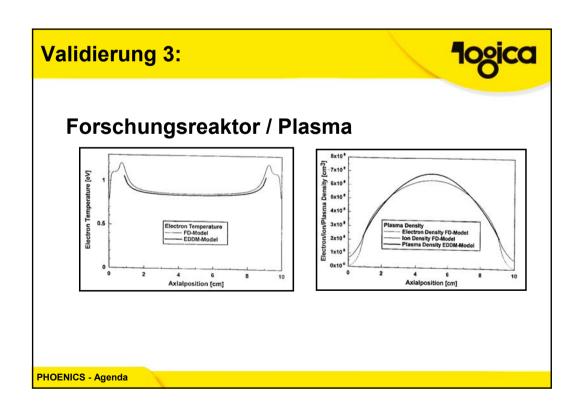
- Heiße Wände
- Batchreaktor

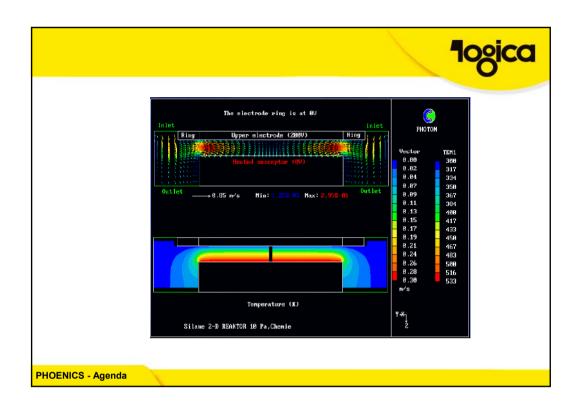

- Einfluß von Geometriedetails auf die Strahlung und die Temperaturverteilung
- Gleichmäßige Erwärmung
- Temperaturen auf der Achse




PHOENICS - Agenda


100ica


- Leerer Reaktor
- Unterschiedliche Erwärmungsprofile



CAD Walk Infineon AG Siemens AG steag RTP Systems GmbH Lehrstuhl für Theoretische Hüttenkunde, RWTH Aachen Zentrum für Mikrotechnologien, TU-Chemnitz-Zwickau

Referenzen

- Fujitsi Eurpean Centre for Information Japan
- Sumitomo Eletrical Industries Japan
- Mitsubishi materials Corpo Japan
- Toyota Technological Institute Japan
- Nippon Sanso Corp Japan
- Osaka City Uni Japan
- Nippon Steel Corporation Japan
- Super Silicon Crystal Research -Japan
- ULVAC Japan
- Seiko Epson Corp Japan
- Konatsu Ltd Japan
- Dai-Dan Co Ltd Singapore
- Nuclear Power Corporation India

- IPS Ltd Korea
- Chonbuk University Korea
- Seoul National University Korea
- National Taipei Univesity Taiwan
- Maryland University USA
- Airblender Products USA
- .
- Antwerp University Belgium
- All Russian Termo Engineering -Russia
- KTH Sweden
- Eindhoven University Netherlands
- European Commission Joint Research Centre - Italy